Appendix B-4 ## What is "Plan to Cost"? "Plan to Cost" is a link in the chain "Design to Cost." The procedure shown below is similar to that for DTC. | 1. Plan to Cost Connection with Design to Cost | (Fig. 1) | |--|-----------| | 2. Operation of Plan to Cost | (Fig. 2) | | 3. Details of the Steps for Plan to Cost | (Table 1) | | 4. Trade Study Example During The Manufacturing Plan | (Table 2) | | 5. Example of Cost Driving Factor During Manufacturing Planning | (Table 3) | | 6. Concept Image of Breaking Point of Manpower If Increasing Tolerance | (Fig. 3) | | 7. Example of Checklist for Manufacturing Drawing | (Table 4) | Fig. 1 Plan to Cost Connection with Design to Cost Upper stream of plan to cost is design to cost, down stream of plan to cost is manufacturing cost are shown below. | PHASE | DESIGN TO COST | | | | | | |-------------------------------|---|-------|---|---|-------|---| | Requirem
ent
Definition | Make conceptual
draws(Draft)
Make WBS | PHASE | PLAN TO COST | | | | | Basic
concept | Proceed trade study of main structure equipment system | | Establish present cost and target cost by conceptual Dwg. | | | | | Basic
Plan Dwg. | Proceed trade study of detail structure and material Equipment vendor selection | | Compare and select
manufacturing
method | | | | | Plan Dwg. | Proceed trade study of manufacturing method Weave the detail idea into drawing | | Gather and example to adopt or not, and establish the target part item quantity | \ | PHASE | MANUFACTURING
TO COST | | manufactu
ring Dwg. | Reflect the meeting result of P-Dwg. | | Pre-plan work for manufacturing | | | Allocate production cost budget | | | | | Plan manufacturing
process and design
the JIG. | | | Verify and analyze the prototype result | | Prototype
production | Test by prototype | | Grasp the problem during first production and create the countermeasure | | | Production of JIG. | | Review | Reflect corrective action in mass- Production Dwg. | | Normalize the
work load and
shorten the
making span | | | Review before
mass-production in
production
department | | | , | ļ | , | | | Reduce the cost
during the mass
production process | Fig. 2 Organization of Plan to Cost Table 1 Details of Steps in Plan to Cost | Phase | Step | Input | | Output | | Notes | Output | | |--|---|--|---|---|--|---|--|--| | means
DTC
output contents | _ | Item | Pre-assuran
ce
activity | Item | Post assurance activity | conditions | approval
level | | | Original
Concept
(Basic
concept
Dwg.) | Establishment of
the Present cost
and the target
cost by conceptual
Dwg. | · Concept
Dwg(Draft)
· Required
Performance
· Related
matter | Estimation work
by the
conventional
design and
manufacturing
method | Present cost Target cost(Draft) Implementation plan of PTC PTC cost schedule graph | Decide the target cost Decide conceptual Dwg. | | Design chief Manufacturing planning chief Project manag Factory chief | | | Break
down
structure
(Basic
plan
drawing) | Selection of
manufacturing
method concept | Experiences
of past
productions Conceptual
Dwg. DTC cost
scheduled
curve | Selection of
manufacturing
method concept | Item list of wants and idea to be weaved into drawing Item list of wants and idea to be weaved into manufacturing plan Manufacturing Type/concept concept[plan], basic plan drawing | Decide concept of
manufacturing type
by trade study.(e.g.
structural
breakdown, special
process and its type) | Estimate the
present cost and
allocate the
target cost first
time. | Manufacturing planning chief Design chief | | | Basic
matter
Basic
design
(Plan
drawing) | Examination to
adopt or not the
wants/idea to be
weaved into
drawing and
manufacturing
plan. Decision of
target number of
part items. | Item list of
wants and
ideas to be
weaved into
drawing | Examination Meeting (Decision group) Adopt or not (Man of planning group) | Plan drawing of
adopted
wants/ideas | Grasp the number of
part items by plan
drawing and decide
the target number of
part items | Estimate budget
for JIG making
*Everything
must be real base | Design chief Manufacturing planning chief | | | Detail
matter
Detail
design
(Manufact
uring
drawing) | Pre-plan work | Plan Dwg. P-Dwg. meeting schedule PTC scheduled Curve | Exact wants and ideas by looking at plan drawing among the concerned people. P-Dwg. Meeting. And pre-plan work by draft of manufacturing drawing | Decided item to be
weaved into
drawing Estimated part
items and its
number Item list of
planning
improvement | Estimate present
cost of each plan
drawing. Divide the
cost reduction by
design and
manufacturing
method | Proceed plan
work by
considering cost
driving factor of
manufacturing
process and
work. | • Planning chi | | | Implement
ation
(Prototype
production
) | Main planning
work | Item list of
planning
improvement | Weave the improvemen t ideas into shop order, tool design order. Estimate the improved cost effect | · Estimated man
hour for prototype | Difference analysis
between estimated
M/H and target M/H
and estimation M/H
of counter measure | Proceed plan
work by
considering cost
driving factor of
manufacturing
process and
work. | • Planning chie | | | Review | Problem
extraction by
prototype and
counter measure
plan | List of counter
measures List of key
question | Extract the problem thru prototype production and counter measure of problem | Item list and its
effect to be
improved in
mass-production
planning | Approval | | Production department chi Planning chi Design chief | | | Normalizat
ion of work
load | Normalizing of
work load and
shortenig the
making span | Prototype
Manufacturing
assemble part
list | Normalize work
load by
simulation | Manufacturing
assembly parts list
for mass-production | Make part order list
for mas-production | | Production department chi Manufacturi | | Table 2 Trade Study Example During the Manufacturing Plan | | Upto plan drawing phase | Manufacturing drawing phase | Production phase | |---------------------------|--|---|---| | Common
and
Assembly | Assembly breakdown and sequence. Tact line breakdown structure. Concept of assembly Jig. | Working posture of work man in
Assembly line. Breakdown structure of Jigs. Effectiveness of power tool | Trade study of counter measure investment effectiveness(Do or not). Trade study of counter measure wants/idea. | | Fabrication
Part | e.g. Cutting speed trade the effectiveness and necessary investment money | Trade study of which fabrication or Forming is totally effective. Trade study between preciseness of tool and reduction of man hour (e.g. Number of stiffener between frames) | Measures to prevent the distortion or ward of parts. | Table 3 Example of Cost Drawing Factor During Manufacturing Planning | Category | Factor to be reduced | Factor to be increased | Note | |--|---|--|---| | Process
plan | Number of process Number of person for one process Number of crane/lift at necessary Scene Number of excess trim work Number of paint Number of functional test Number of functional test Number of posture to up ward Number of harness board Number of inspection Number of soldering | Number of parallel working
Net trim number
Number of low price
purchase than implant cost | Number of order means In wide sense: Number of load center in marrow sense: In narrow sense: Number of settings No bench test before installation but provide the harness for trouble shooting | | Tool
design
(Includi
ng
tooling
manual) | Number of fastening Number of fastening action Number of adjustment Weight of tool | Number of scaffoldings
Number of scribing line in
Jig | 3. Standard weight • Up to 10kg for one person • Up to 40kg for two person work Increase scaffoldings to go to next scaffolding The many scribble line in the Jig, the better and quick corrective action | | Facility
Examin
ation | Waiting time before starting work and closing time before stopping the machine Cycle time of process Operating time of crane or lift Number of person to operate the crane | Number of automatic
machine number of power
tools | Reduction of cycle time must include cutting speed, depth of cutting etc. | | Examin
ation of
handtoo
l | 1. Weight of hand tool | Number of power tools
Number of one man
operating tool | Example and allocate the scene which is necessary to have special tools before purchase | Fig. 3 Concept Image of Breaking Point of Manpower if Tolerance Increases Table 4 Example of Checklist for Manufacturing Drawing | DTC checklist for manufacturing drawing (Examine the idea from statement of function shown in plan drawing) | Drawing
No. | | | Check
ed by | Grou
p
leade
/r | Sectio
n
Leade
r | Departme
nt chief | |---|----------------------|-------------|--------|----------------|--------------------------|---------------------------|----------------------| | PHASE
(Check plan drawing before making each
drawing) | manufacturing | | Date | | | | | | 1 . Did you request and receive the wants an | d ideas by showin | g the plan | drawii | ngs? | | | | | 2 . Are there any parts in common? | | | | | | | | | 3 . Are there any themes or perts to be integr | rated into one par | t or functi | ion? | | | | | | 4 . Are there any parts which can be substitu | ted by a lower co | sting part | ? | | | | | | 5 . Are there any places where the cost driving | ng factors can be i | educed? | | | | | | | 6 . Is it possible to realize the target number of p approve this drawing? | arts allocated for e | ach plan di | rawing | if you | | | | | 7 . Did you record the scheduled theme to be drawing? | examined in the | mass-prod | uction | phase | | | | | | | | | | | | | | PHASE (Before pre-planning) Date | | | | | | | | | 1 . PHASE -Does this drawing involve the theme examined in Phase I. | | | | | | | | | 2 . Did you realize the target number of parts allocated. If not, did you ? the potential theme to be examined at mass-production drawing phase | | | | | | | | | | | | Da | te | | | | | PHASE (After pre-plan work) | | | | | | | | | Did you finish examining all proposed items from the manufacturing and quality departments? | | | | | | | | | ${\bf 2}$. Are there any additional themes to be examined in the mass- production drawing phase? | | | | | | | _ | | | | | | | | | |